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!• Introduction

Multi—dimensional , time—dependent flows are generally
considered as problem s which can be analyzed numerically only by
high— speed , large—scale computers , because of the large number of
grid points necessary to achieve the required degree of accuracy.
The need is emphasized when viscous effects have to be taken into
account [1]. There is no doubt, however , that the inclusion of
v iscous effects is a must to achieve phys ical reality in certa in
problems. To this category belong all fl ows involving separa-
tion , plum e fo rmation , shock—boundary layer interaction with
upstream propagation of signals in a generally supersonic flow,
self—sustained flutter, etc.

The use of appropriate numerical techniques reduces the
need for a large number of grid points and allows a mini—computer

r to be used for the analysis. After experimenting with a certain
number of suc h problems and finding that the above statement can
be supported by concrete evidence, I consider prope r to report
the techniques in full detail . Two—dimensional or axi—syinrnetr ic ,
time—dependent , viscous flow problems at high Re ynolds numbers
will be considered .

We will discuss the basic points which make the technique
efficient , v iz . :

a) a proper formulation of the equations of motion ,
b ) the use of mappings ,
c) the stretching of coordinates ,
d) the discretization of the equations ,
e) the treatment of imbed ded shocks .

2. Equations of motion

In vecto r fo rm , the equations of motion for a viscous
flow (Navier— Stoke s equat ions) ,  assuming that the viscosity , u
is a constant , are:



Equations of motion

Dp

DV 1 i4 p • p
+ VP = V V . V — VxVxV (1)

DS 2
= ~• + K v e

where p. p, S and e are the thermodynamical parameters density ,
pressur e, entropy and temperatur e , respectively. In the same
equat ions , V is the velocity vector , t is the time , K is the
coefficient of heat conduction , and • is the dissipation term.
The latter is a well—known non—negative quadratic form depending
on the space derivatives of the velocity components. Its expres-
sions for the various orthogonal coordinate systems considered
in the present Report will be given later on. If pressures , den-
sities and lengths are ex pressed in terms of reference values ,
p , p and x , respectively, corresponding units of veloci—
ref ref ref
ty, time and temperature are defined as

u (p /p ) h / 2 , t = x ,u , e u2 /R ( 2 )
ref ref ref ref ref ref ref ref

where R is the gas constant.

A Reynolds number and a Prandtl number can be defined as

R = p  u x /p , P : c~~ /~e ref ref ref r p

where c is the specific heat at constant pressure. Finally, let
the entropy be c (the specific heat at constant volume). The
equations of motion can thus be written in the form:

Do
+ oV .V = 0Dt

— 1~1 DV 1 1 L~ • +

I + p V V. V— Vx V x V ]
e (3)

~~~~ DS 1 j 2

JTTT ~~~~ E ( y — 1) ~ + 

~r 
V e]
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Equations of motion

In an invisc id flow, the terms here affected by i/R
e 

do
not appear. For a proper numerical, analysis of such flows, whose
mechanics is governed by the propagation of sound waves and by
the convect ion of entropy along particle paths , it is convenient
to consider the logar ithm of pressure , P, instead of the density,
as an un kn own , and to make use of the equation of state for a
perfect gas:

S = y in e — (y—i)P ( L )

so that the equations of motion for an inv isc id flow (Euler ’s
equations) can be writ ten in the form:

DP
+ yV . V = 0

If the flow is v iscous , the basic phenomena of wave pro-
pagation are still present, although modified by the concurrent
effects of diffusion. Therefore, it would not be advisable to
drop the basic integration techniques for convective terms ; we
will consequently write the Navier— Stoke s equations in the form:

aP  ~~‘ t DS— + v . V P  + y V . v  = —at Dt
+

aV 1 2 + + 1 ~4 + +— + — v ( q ) — VxVxV + 9 VP = — ( VV .V—VxVxV]at 2 OR
e 3 (6)

35 + 1 2
— + V.VS = 

~~~~ 
+ V 9]

(where the material derivatives have been replaced by partial
der ivat ives , as costumary, and q is the modulus of the velocity).
In what follows , the density will no longer be used expl icitly,
and p will be redefined in Eq. (8).

— 3 —



Conformal ma pping

3. Con formal mapping

We will  consider two types of flows , both depending on
two space variables : two—dimensional (plane )  flows and axi—
symmetric flows . Two Cartesian coordinates , x and y ,  will be
used for two—dimensional flows, the same symbols will be used
for the axial and radial coordinate , respectively, in any m e n —
dional plane of an ax i—syinmetnic flow. The (x,y)—plane will be
called the physical plane .

In addition , we will introduce a complex variable

z = x + i y  (7)

and assume that , in general , the physical plane will be confor—
mnally mapped onto an aux iliary plane , described in terms of a
complex variable c ,

c = + i r~ = p e~
0 ( 8)

Obviously, if no mapping is needed , all the formulas below are
v alid , provided that ~ = z , that  is , ~ = x and n = y . The map-
ping function must be chosen in suc h a way that  the contours of
the flow field are as close as possible to F:constant and

~:constant lines, or to p oonstant and e=constant lines £2]. Let

d~ iw
g = ’ :G e  ( 9 )

G —1w ( 10)
g

We will begin with the case in which F and ri are used .
Let

1 d log g
g dz = 1 + ~ 2 ( 1 2)

Let al.so 1, 3 be the unit vectors tangent to the n = constant
line and to the ~ constant line in the z—plane , and u and v be

— 4 —



Confo rmal mapping

the corresponding velocity components , respectively, so that

( 13)

It is convenient to note that

~ :Gø , ~ :G$ , r~ -.GZ , r~ ( 1 4)
x y x y

x =ø/G , x =—Z/G , y =Z/G , y =ø/G ( 15)
n n

2 2 2  2 2  2
~ +~ =G , x +x = 1/G (1 6)

x y

G~~G$1
, G — G $

2
, w $

2
, w $

1 
( 17)

If r and 3 are the unit vectors parallel to the x— and y—axis,

respect ively , and

= U t + V 3 (18)

it follows that

t.34 , 3.1=4 , 3.3=~ ( 1 9)

U=u’—vZ, V=uZ+vg, u=ti~+V3, v:—UZ+V~ 
( 20)

For any element ds in sp~ace, we have

ds
2 d~

2
/G

2
+dr~

2
/G

2+dx~ ( 21 )

if x is the third Cartesian coordinate , in a two—dimensional
prob~ e~n , and

2 2 2 2 2 2 2
ds = d~ /G +dn /G +y dx3 

(22)

if x
3 

is the angul ar coordinate in an ax i—symmetric problem.
Consequently, in a two—dimensional problem , the basic vector
operators in (1) can be expressed as follows:

VP G( P £+P 3) (23) 

~117



Conformal mapping

+ 2 v u
V x V G  C(~ )~— (~7 ) R  (2~4)

+ • 2 v u
V x V x V G ((—) — () )(vt—u3) (25)

G~~ G~~

(26 )

V e~~ (9 +6 ) (27)
~ tin

and

• 4 ( e 2
2

+e
2

÷e~ 1
) + ~‘t (e —e )

2
+(e —e )

2
+(e

33
—e

1
)
2
] ‘28)

with

e
1
=G(u +v~2

), e
22

=G(v —u4,
1
), e

12= ~ 
[(Gv) +(Gu) ] (29)

and e33
, e

23
, e

31 
equal to zero .

In an axi—symmetric problem , (23), (24), (25) and (28)
still hold , but (26) and (27) must be replaced by

v.V = G~~[(~~) ~~~ + (30)
G~~ G r ~ y

V 9 G (e  +9 ) + ~(Ze +øe ) (31)
~ tin y E; i~

and e is not zero , but

V
e (32)
33 y

From now on , we will follow the common practice of using a multi-
plier , j, which is equal to zero for two—dimensional flows and to
1 for axi—symmetric flows. We will denote by Q the only non—zero
component of the curl of V (24):

a = G (v —u -v$
1
-u$

2
) (33)

and by A the divergence of 
‘

~~ (26) or (30):

A = e
11
+e
22
+e33

, e
33 - j 1 (34)

and introduce the symbols

— 6 —



Conformal ma pping

D = G(v~~+u~~) , E = G(v~~-.u~~) + e (35)

It is easy to see that , in terms of the independent var iables ~
and n, the Navier— Stoke s equations are:

P +G (uP + vP )+1 G(u + v  ) +yE
t ~ Dt

u + G(uu + vu ) + vD + 061’ ~~ —j ~t ~ 3~~~ r~ y pR
e

4 
(36)

v + G (uv +vv ) — u D + G O P  = N’ GA +GQ
t n ti 3 n ~ y pR

e

S + G(uS + vS ) = [ (y — 1) $+ ~~v 2e ] / (pR  )
t n 1’r 

e

with • defined by (28) and

2 2 0v e = G (9 +e )+j  — (se +øe ) (37)
nn y ~ n

If the basic variables in the c—plane are p and e , we
will define I and 3 as the unit vectors tangent to the e=constant
lines and p=constant lines, respectively, and the velocity com-
ponents, u and v , will be defined accordingly, so that (13) st ill
holds. Practically, all equations from (12) through (37) must be
changed , as follows .

• 

~~, d log g 
= •~ 

+ (38)

Gc i(8—w )
ø+iz = — = e (39)pg

0 = cos(8—w ) , 8 = sin(8—w ) (40)

~ = G 0 , p =G$ , 9 :— ~~‘Z , 9 =~~~0 (4 1)
x y x p y p

x = 0/G . x — pZ/G, y $/G, y = pZ/G (4 2 )e e
2 2  2 2 2 2  2

0 + 0  : G  , X + X /p = 1/G (43)
x y  ~ e

G = G ~~/p ,  G = — G ~ , w :+ /p , w (44)p 1 9 2 p 2 ~ 1

— 7 —



Conformal mapping

2 1 2 
2

2 2 2
ds = dp + de + j y dx

3G
2 

G (4 5)

VP = G ( P  ~ + 
! 

~ (4 6)
p p 9

VxV - G
[(

Pv U
- p G ~ , 

— (~ •)~~J (47)

Vx V x V  = ~~E (~~ ) - (~~) ]( vt-u3) (4 8)
p G p G e

V .V = ~~‘E(~~ ) + (
V

) ] 
V+

(4 9)p G 0 G e  y
v G v

e G(u + — • ) , e = Cv + u ( 1—  )] , e j  —
11 p p 2 22 p 9  1 ( 50)

= 
1G[v — !( 1_ 4 )+ ~~u —ut.)]C

12 2 p p 1 p ~
D = ~t—v (i-4 1

)+u~2
] ( 51 )p

E = ~‘tu (i— ~D )+v$2
] + e33 

(52)
p 1

a = G(v -~~ ) - D (53)
P o e

A = e + e + e (514 )
11 22 33

In this case , the Navier—Stokes equations become:

V
V 9 DS

P + G (uP+ P ) + ‘rG(u + )  + y E - —

t p p O  p p Dt
v 4 G 0 8

u + G ( u u + u ) + v D + GOP = (0A — a — j a ) -
t p p 9  p 3 p  p 9  y pR

e
(5 5)v G 4 G  8 8v + G(uv +~~~ v ) — u D +~~~~P ( A  +GQ + j— a )——t p p 8  p 6 3 p  8 p y pR
e

S + G(uS + ) = [ ( y — l ) s  + 
~—V

2
e3/(PR )t 0 p 8

r

— 8 —



Conformal mapping

with 1 defined by (28) and

2 e Z+6 0/p
2 G 1 p 8

V 8 = (8 +pe +— e  )+jG (56)
p p p p p  98 y

‘4. Computational plane

The c—plane , however , is not the computational plane. In
most instances (and particularly for viscous flows , when boundary
layers and shear layers are present), grid lines must concentrate
in the regions of highest gradients. An efficient way for
achieving an uneven partition of grid lines consists of using
stretching functions, which essentially define a correspondence
between r~ (or p)  and a new variable , X, and between ~ (or 8) and
a new variable , Y. The boundaries of the region to be computed
in the physical plane should be made to correspond to the X=0,
X=1 lines and to the Y=0, Y=i lines, respectively. The computa-
tion is per fo rmed in the (X, Y) plane , using a rectangular grid
with evenly spaced lines; it must be noted , however , that
X=constant lines and Y=constant lines on the physical plane are
generally not orthogonal to each other , since the boundaries are
not necessarily represented by ~=constant lines and n=constant
lines , or by p:constant lines and 8:conztant lines.

Wc will consider here two examples. In the first, the
basic variables in the c—plane are ~ and t i ;  two boundaries are
defined by constant values of ~ and two boundaries are defined by
value s of ~ which depend on ~ and t , as well.  It will be neces-
sary, thus , to define Y not only as a function of n but of ~ and
t, and to distinguish carefully between the time , t , in the phy-
sical plane (or in the c—plane) and the time , T, in the computa-
tional plane. Therefore, we will write:

X = X(~ )

V Y(F~,-,,t) (57)

T = t

— 9 —



Computational plane

Letting

a = GuX , a = yGX , b V +GuY +Gv ’f , b = 1GY
11 12 1 1 t ~ 12 

?58
g = T GY , a = G8X , h = G8Y , b = GOY
11 21 2 21

and

F C (y— l )~ + ~~ V
2
8]/(pR )

e 
(59)

= yE — F

c = vD — ~~ — ‘t—GA —Ga —j -
~~ 

a]
2 p R 3  ~ ti (60)

5
c = — u D — C G 8 +G~ + j — ~~J
3 pR 3 n  ~ y

e

the equations of motion are recast in the fo rm :

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + c
1 = 0

u
T
+a

ll
u
X
÷b

ll
u
Y
+a

21
P
X
+h
2
P
Y
+c
2 

(61)
v+a v -i.b v + b P+c = 0
T 11 X 11 V 21 Y 3

S
T
+a

11
S
X
+b

11
S
Y 

F

In the second example , the basic variables in the c—plane
are p and 0; two boundaries are defined by constant values of 8
and two boundaries are defined b~ values of p which depend on e
and t. It will be necessary, thus, to define X not only as a
function of p but of 8 and t; therefore, we will write :

X = X(p,9,t)

Y = Y(e) (62)

— 10  —



Computat ional plane

T = t

Letting

a = X +Gu X +GvX /p , a 1GX , b = GvY /p11 t p 8 12 p 11 e

b
12 = 1GY /p g

12 = 1G X / p , a
21 = GOX (63)

= G8X / p , b~ 1 
G8Y /p

and F, c
~ 

as above in (59) (60), respectively, and

c vD — —[—‘A —Q J p  — j  —a]
2 pR 3 p  8 Gy

e
(614)

eG 14 5
o :— u D — [ A / p ÷ Q  + j — ~~)3 p R 3 O  p Gy

e

the equations of motion are recast in the form:

P+a P + b P+a u+ b  v+ g v+c =0
T l i x  1 1 Y  1 2X i2Y i 2 X  1

u
T
+a

ll
u
X
+b

l 1
u
~
+a

21
P
~
+c
2
=O 

(65)
v
T
+a

l i~
1
x
4.b

i 1v~
+b

21
P
~
+h
3
P
~
+c
3
=0

S+a S + b S = F
T 11 X 11 V

It is easy to see that the first three equations (61) and the
first  three equations (65) have the same form as Equations (23)

of’ £3 ] .  The integration procedure explained in £ 3 ]  can be ap-
plied . We expect the integration technique to provide a very
good estimate of convection and wave—propagation effects which
are common to inv iscid and viscous flows.

— 1 1 —



Rigid boundaries

5. Rigid boundaries

For a v iscous flow , the velocity at a rigid boundary is
assumed to vanish. There are no difficulties, thus , in the
determination of u and v. Pressure and entropy require more
care. We consider here the case of an isothermal wall; the tern-.
perature, 6 is a prescribed constant. Because of (14), P and S are
linearly related; therefore,

DP

and consequently, the first of (36) and the first of (55) must be
replaced by

P + G(uP svP ) + G(u +v ) = a (66)
and 1 ~ I

P + G(uP + P ) + G(u + v ) = 0 (67)
t p p 8  p p 9

respectively, having taken into account that, in both cases , E
vanishes identically. The equations to be solved are still (61)
and (65), provided that a

12
, b

12
, g

~~ 
and g

12 
are divided by y

and c
1 
is set equal to zero.

Once the pressure has been determined , S is obtained from
(4). Therefore, S is not calculated directly as a result of diz—
sipation and heat transfer in the flow, because the condition of
constant wall temperature implies some external action , and (‘4)
gives us the final outcome of such action and the local variation
of pressure.

6. Integration procedure

The equations of motion (61) or (65) are integrated fol-
lowing the general guidelines of Section 6 in [3]. We define

C~~g11
u~ + 0

1 
C~:b11

u~ + h
2
P~ +

— 12 —



Integration procedure

(68)
C

1=~ 12
v~ , C

2
=a~~v~ + h

3
P
~ 

+

After finding the characteristic slopes, A~ , A~ ( i= 1 , 2) from
i 1

x Y
a
11

_A
~ a

21 
b
11

—A
1 

b
21

=0 , =0 (69)

x Y
a a —A b b —A
12 11 i 12 11 i

and letting

x Y
a —A b —A

A
1 

A
X_A~ 

, B~ =

2 2 1 
(70)

a. b
D
X - ij 

D
Y 

-

ij - X X ‘ ij 
- Y V

the equations to be integrated are:

P~ + A A
~
P
Xl

_A
2
A
~
P
~~ 

+ 
~~~~~~~~~~~~~~ 

+ C~ =0

~ 
(71)

U
T 

+ D
2i

(A
2
P
x2

_A
i
P
xi
) + A

1
A
2
u
~~

_A
2
A

1
u
~ 1 

+ C
2 

=0

and

V Y V V V V V
+ B

1
A

1
Py 1-S

2
A

2
Py2 + D

l2
(A
2
v
Y2

_A
l
v
Yl
) + 1 

2
V V V V V V

v
T 

+ D
21

(A
2

Py2
_A

1
P

Y1
) + B

1
A
2
v
Y2

_B
2
A

1
v
Y1 

+ C
2 

0

with

X V
P
T

= P
T
+P

T

For discretization , the space der ivat ives are class ified
into three categories: (1) the ones expl icitly appearing in (71)
and (72), (ii) the ones explicitly appearing in (68), and (iii)
the ones appearing in (59), (60) and (614). The derivatives of
the first category are discretized according to the rules (114)

— 13 —



Integration procedure

and (15) of [3]; the derivatives of the second category according
to the rules (34) and (35) of [3]; an the derivat ives of the
third category are approx imated by ordinary centered differences,
because the physical natur e of the terms which they affect is
dif fusion.  Few exceptions to the general rules are necessary for
points on rig~.d boundaries or next to rigid boundaries. For
points on rigid boundaries , the alternate two—point—three—point
approximation is always taken using points inside the flow field.
For points next to rigid boundaries, if use of a - point located
behind the wall were required in a three—point approximation , the
latter is substituted by a two—point formula.

7. Numerical treatment of shocks

Shocks are generally present in a compressible flow
field , either as boundaries or imbed ded in the flow. In both
cases , they can be treated numerically in the general framework
of the computational technique described in the pr evious Sec-
tions. We begin wi th some general considerations.

Let ~ and ~ be the unit  vector normal and tangential to a
shock at any of its points, Q, respectively:

= N
1
! + N

23 
, = —N

2
! + N

13 
(714 )

+
W the shock velocity,

W = W ~~~ (75)

and ~~, ~ the velocity components along R and ~~, respectively:

~ = uN +vN u = i ~N — ~N
1 2 1 2 (76)

~~= —uN
2
+vN v = ~~N + ~N

The N—component of the velocity relative to the shock is

— 14 —



Numerical treatment of shocks

~i =~~~— w  (77)rel

The relative normal Mach number on the low pressur e side of the
shock is

-
n irel 

(78)

The Rankine—Hugortiot conditions are: 
--

2
2yM —y+ln irel

P = P  +ln
2 1 y+l

(79)

1

2rel y+l irel y+l u
irel

We will need the derivatives of P and u with respect
2 2relto W:

3?  4i~2 lrel
= - 

~~2 -(y- i) e
l r el 1 ( 80)

~~2rel 
— + 

2 _____

3W y+1 y+l ..2
u

irel

Let us assume that the shock is or iented in the general
direction of the X=constant lines ; therefore , it can be defined
by its intersections, X , with Y:constant lines. At each inter-
section , we consider two points, one on the low—pressure side and
the other on the high— pressure side. The point on the low—
pressure side must be updated by usthg information proceeding
from that side only. The point on the high—pressure side must be
updated by using information from both sides. The info rmation
proceeding from the low—pressur e side must satisfy the Rankine—
Hugoniot conditions ; the information proceeding from the high—
pressure side is carried to the shock along a characteristic .
The acceleration of the shock results from the compatibility of

— 1 5 —



Numerical treatment of shocks

the different information. To obtain the characteristic equa—
tion , we should rewrite the equations of motion in a frame rela-
tive to the mov ing shock , where the Y—coordinate of the shock is
unchanged but its X.-coordinate follows the shock in its motion.
Therefore , we will introduce a new set of coordinates ,

x = X — X (V,T)
5

c = Y  (81)

- r = T

and rewrite (61) and (65) in the form:

P+ a P+b P+a u+b  v÷y v+c =0
t ii x i i  c 12 x 12 c 12 x 1

u + ~ u+b u+a P+h P +c =0-r l i x  li~~ 2l
~~ 

2t 2 
(82)

v+a v + b v+b P+n P +c =0-r 11 x l i c  2 1 c 3 x  3

S +ct S + b  S = F-r ~ x 11 c

where

a
21 =a21—h2

X
3 V

(83)
y
l2~

g
l2

bi2
x
sY , n

3
=h
3
_b

21
X~~

A characteristic equation may now be obtained , using x and -r as
basic independent variables:

(a —A) (P +AP )—a (u +Xu )—y (v +Av )+R = 0 (84)
ii t 

~ 
12 t x 12 t x

where A is the solution of the equation

a
11

—A a21 1
3

a
12 

a
11

—A 0 b 0 (85)

V 12 
0

— 16 —



Numer ical treatment of shocks

that is,

1/2
A = a 11

± (a
12
a

21
+11213

) (86)

and R comprises all the remaining terms.

Note now that

a 12 = 1GvN 1 
y~~ = yGvN

2 
(87 )

a21 
= G6vN

1 
1
3 

= Ge~N2

where

2 2 . 1/2

(88)

Therefore ,

a
12
u + ‘r 12 v =

a u + y v = yGui~ —y Gv ( uN +vN ) (89)
12 -r 12 t ‘r i t  2t

~ u ÷ y  V = y Gvu
12x 12x x

Instead of (84) we can write:

(a — A ) ( P  +AP )—yGv (i~ +A~ )+R = 0 (90)
11 t x -r x 1

where

R = R + y Gv (u N  —vN )
1 i t  2t

A further simplificat ion is obtained by observ ing that

1/2

— 

a
11

—X 
= ± 

12
a

21~~~12 1
3

) 

= ±.! (91)
yGu yGu y

because of (87 ) and (88) ,  so that ( 9 0)  can be written in the
fo rm :

— 17 —



Numerical treatment of  shucks

(P +AP )+~ +A i~ +R = 0 (92 )
V ~r ~ 

T

The values of P and ~ , obtained by integrating the
Navier— Stoke s equations (82 ) t using information from the high—
pressure side of the shock only, must satisfy (92). On the other
hand , the exact solut ion of the flow problem in the presence of
the shock, which accounts also for the information from the low—
pressure side and the Rankine—Hugoniot conditions , must satisfy
(92 ) as well. Therefore, if we write (92) twice , once for the
-r—derivatives as obtained from the Navier—Stokes equations (that
is, using for the shock point the same integration- procedure
which is appl ied to other points) and again for the exact
t—derivat ive s  and we subtract one equation from the other , the
simpl e resul t is obtained :

a (NS) ..,(NS)
±—(p —P ) + U —u 0 (93)
y t -r r r

where the derivatives obtained from the Navier—Stokes equations
are labeled (NS) and the exact derivatives are unlabeled.

The latter derivatives can obviously be expressed in the
fo rm :

~
‘
2p = p0 + W , = + —a W ( 9 14)-r -r 3W r -r -r 3W -r

where f* is a derivative computed considering U as a constant,
The acceleration of the shock is thus obtained :

(NS) .,(NS)
±a(P ..P0)+y(u ..i j *)

U = 
-r ~~

-r ±a 3? /3W + y 3u /3W
2 2 (95)

Since both the starred derivatives and the derivatives indicated
by (NS) are computed using the same initial values , (95) can be
replaced by

~‘ At -t 
- 

ta 3P / 3 W + y 3 ~~/3W2 2 (96)
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Numer ical treatment of shocks

where P’ and ~ are the value s on the high—pressur e side of the
zhock obtained from updated value s on the low—pressur e side by
applying the Rankine—Hugoniot conditions to a shock whose
geometry has been updated but whose velocities, U, are still the
same as at the beginning of the integration step. This result
[4] is remarkable since it provides an extremely simple method
for calculating the shock acceleration although it relies on the
same basic concepts which have been shown to be necessar y for a
proper , physically correct , handling of shocks [5].

We will now consider first the case where the shock is a
boundary, moving into a gas at rest, and then the case of an im—
bedded shock.

In the case of a shock moving into a gas at rest, let us
assume that the shock is a right boundary of the computational
field. It is, thus , defined by X=l; in this case, x~ 

c and r
coincide with X, V and T, respectively and a =a , a , =a

11 ii ~1 21
a
12

=a
12

, y
12

g
12

, ~3
=h
3
. The characteristic reaching the shock

from the high—pressure side is a right—running characteristic ,
and in the preceding equations, whereas a ± appears , the upper
sign must be uaed .

2 
Note ~n addition that = and 

~~
=O; there-

fore , ~ =—W and M =W /y. In this case , obviously, the
irel n i re l

low—pressure side value s are known without any need for comput-
ing ; the (NS)—va].ues on the high—pressure side are obtained to-
gether with and using the same procedure as for interior grid
points.

For an imbed ded shock, whose location does not generally
coincide with a grid line , we use a simplified procedure to ob-
tain the values at the shock on the low—pressure side and the
(NS) values on the high—pressur e side. On the low—pressur e side ,
instead of integrating (82) (which would require a special , and

P

not easy, redefinition of approximations for the x— and
c—derivatives), we simply assume that the values at the shock can
be extrapolated from ~he two adjacent grid points on the same
y=constant line , both at the end of the predictor and the correc—
tor level . On the high—pressure side, we assume that the T—
derivatives on the shock are equal to the T—derivatives at the
grid point next to the shock on the same Y=constant line . Note ,
however , that
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Numerical treatment of shocks

f = f  + f  X (97)
t T x sT

for any function ~
‘
. The values of at the shock are assumed to

be the same as at the next grid point on the hight—pressure side ,
on the same Y=constant line. The values of f are approximated
as follows: A

F ~[f —f + -
~
“

~~~~
- (f —f ) ] / A X  (98)

x A s l+c B s

where s= (X
A
_X )/AX and A is the grid point next to the shock on

the high—pres~ure side and B is the next grid point. This formu-
la provides a smooth transition when the shock crosses an
X=constant line.

For an imbedded shock, thus, the calculation proceeds as
follows: In the predictor stage, after updating all grid points,
the low—pressur e side of the shock is obtained by extrapolation
and (97) is also applied to P, u , v and S. The values on the
high—pressur e side are updated by adding f At to th~ initial
values of f; the values so obtained are the predicted ~ 

NS 
The

predicted f0 are obtained by applying (79) to the predicted
values on the low—pressure side. Then, (96) is applied and W is
temporarily updated , but its orig inal value is retained in
storage. The geometry of the shock is updated , consider ing that ,
in virtue of (75), (14) and (19),

~ = 0W/N (99)
st 1

or , using (141) in lieu of (14),

p = 0 W/N (100)
P

and using the approximations:

~ (t+At) = F (t)+~ A t+ At
2

s s st 2 stt
1 2 

( 1 0 1 )
p (t+At) p (t)+p At+ p At
s s st 2 s tt

where the second derivatives are obtained by differentiating (99)
or (100). In the corrector stage, the procedure outlined above
for the predictor stage is repeated through the application of
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Numer ical treatment of shocks

(97). The updating of the values on the high—pressure side is
obtained by adding

— f
(Pred )

)A~
2 t -r

to the predicted values. The corrected f’ are obtained by apply-
ing (79) to the corrected values on the low—pressure side, with
the original value of U. Then, (96) is applied again and U is
definitively updated . The Rankine—Hugoniot conditions (79) are
applied once more to the corrected values on the low—pressure
side using the final value of U, to obtain the final value s on
the high—pressure side. The entropy is also computed from

S = S + P —P — yln(~ /~ ) (102)
2 1 2 1 irel 2rel

At this stage , it is convenient to correct the values at
the grid point next to the shock on the high—pressure side.
Pressure and velocity components are interpolated from the values
at the shock and the following grid point. Entropy is also in-
terpolated considering that it is carried along a streamline.

8. An example

To illustrate the technique , let us consider the follow-
ing example. A duc t (either two—dimensional or axisyminetric ) has
its centerline on the x—axis; its lower wall (AC ) is defined as
the image, in the z—plane , of a straight line , 9=9 , in the
c—plane (Fig. 1). The mapping is defined by

z = (r Iir)[(z
2
— 1/z

2
)/2 - logz

2 
- it]

o 2 2 2 
(103)

+ l/z
2 = 2B (~ + 1/c)

where r is an arbitrary parameter , and B is determined to assure
corresp~ndence between c=1 and z=—i. The section of the duct at
1=0 (AS) is defined by p =1 . We assume that the duct itself is
fitted to an extremely long shock tube in which, by means of an
ideal device , the flow behind the shock is mad e to arrive to the
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exit without a sizeable boundary layer and practically uniform

Fig. 1

across , save for the vanishing of the velocity on the wall. At
t=O , the shock (which we will call the precursor shock) is just
out of the shock tube and into the duct. At every value of t, we
will define its position as

c = p ( 8 , t )  ( 10~4)

and we will compute the flow in the duct (that is , between
p l  and p=c and between 9=8 and 8:ir/2) assuming that the super-
sonic flow at the entrance o? the duct remains unchanged.

The computational variables X, V and T are def ined in
terms of p ,  e and t as follows:

tanh [a(V—1)] 11
0 = (— — 8 )

2 o tanh a 2

o = 1 + [c(V ,T) — 1]X (105)

t = T
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The calculation is started at a small, positive value of
t , when the precursor shock has already moved from AB. Initial-
ly, the shock is assumed to lie on a p=constant line (with the
value of the constant , a , slightly greater than 1), and all
parameters pertinent to the shock are assumed equal to their
values at t=0 (since the flow behind the shock is uniform , the
shock Mach number defines pressure, velocity and entropy). FJni—
form flow is assumed between AS and the shock, if the gas is
invisc id . The velocity component , v is mad e equal to zero
throughout . In it i a l ly ,  the computational region is div ided into
two str ips only along the X— axis .  Along the V—axis we consider
as many partitions as necessary to prov ide sufficient resolution.
Since the flow is viscous , we need some modifications to the ini-
tial conditions near the wall ,  to accoun t for the vanishing of
the velocity at the wall. The precursor shock cannot reach the
wall; the perturbation front , elsewhere in the form of’ a shock ,
becomes a characteristic at the wall, somewhat smeared out by
viscous diffusion. Therefore, on the initial p=c line which
represents the shock , P is assum ed equal to zero at the wall. On
the next wall point , P is taken equal to one half of its value
behind the shock. The wall temperature is assumed equal to 1 at
any time. The entropy is defined accordingly. The u—velocity
component is taken equal to one half of its value behind the
shock along the second 8=constant line from the wall. The calcu-
lation proceeds as detailed above. We note that the centerline
is computed as a symmetry line , not as a rigid wall. For computa-
tional purposes, the shock geometry is prolonged to the wall with
a constant val ue of c, and the wall point is computed as any in-
terior , shockless point , taking advantage of the fact that the
state of the ~as in front of the perturbed region is known . The
same procedure is automatically applied to any other point on the
perturbation front , if the shock happens to lose its strength
completely.

As the calculation proceeds, the number of grid intervals
in the X—direction is doubled every time (c—i ) on the centerline
exceed s 1. 4 times its ini t ia l  value or the value it had at the
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prev ious doubling , until the total number of intervals is 16.

Certain features of the flow are common to the inv iscid
and viscous models. An expansion appears fr om the beginning near
the inlet of the duct; the region of maximum expansion moves from
left to right , but at a sl3wer speed than the precursor shock.
Consequently , even with the precursor shock losing strength , the
pressure behind it remains higher than the lowest pressure al-
ready attained along the duct. The particles are accelerated and
then decelerated again. A compression wave appears , which tend s
to steepen up, as every compression wave does, and another shock
results eventually.

In the presence of viscosity , the recompression wave and
the secondary shock strongly interact with the boundary layer in
the process of formation. The latter thickens and separates very
soon . Between the main stream and the wall, a wide dead—water
region appears, where the pressure tends to equalize the ambient
pressure (in front of the precursor shock). When the separated
flow becomes steady, it is what is commonly defined as a plume.
From the separation point on , the plume is insensitive to the
wall geometry and the flow inside it is essentially invisc id .
The results of the calculation of a steady, inv iscid flow in a
plume can be used to judge whether the viscous calculation ap-
proaches its theoretical asymptote , and how well.

In the present example , a=2, and the sector between 8:0
and 9=-r/2 is divided into 16 intervals. Consequently, we obtaifl
a fair accumulation of grid lines near the wall , and still work
with a reasonably small number of lines. It is clear , however ,
that the resolution is well below the limits which are usually
recommended for a good description of Reynolds number effects;
the lack of an adequate resolution is particularly felt in the
vicinity of the plume shear layer. Nevertheless, the present
results are very encouraging , just because very good qualitative
results are obtained with such a coarse mesh.

Based on realistic values of the inner diameter of the ~hock tube
(25.4 m), of the kinematic viscosity of air (.0016 m /sec) and
of the speed of sound of the gas at rest (360 in/sec), R turns
out to be of the order of 2500. For such a Reynolds numger , the
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resolution of the grid near the wall cannot provide accurate de—
tails of the boundary layer , such as needed , for example , to com-
pute the skin friction , but it is sufficient to furnish an ade-
quate pictur e of the layer in the general context of the flow.

The Prandtl number is taken equal to 1 , and y equal to
1. 14. The values of r and 8 are 2.2603 and 1.2, respectively.
The temperature at the c-all is°assum ed to be equal to 1 , that is,
to the temperature in the gas at rest. The value of P at the in-
let is 1.6487. Consistent values of u and S are u=i.6551 ,
3:0. 1702, The Mach number at the inlet is barely supersonic ,
M:1.040. The flow is assum ed to be two—dimensional.

The evolution of the flow i’s sho wn in Figs. 2 through 13.
In Figs. 2 through 8, isobars are plotted . The left vertical
line is the inlet cross—section , the lower curved line is the
wall of the duct , the upper horizontal line is the duct center—
line (on which notches indicate multiples of the unit length);
and the right boundary is the precursor shock. The line marked
with 0 is the sonic line . Step 800 is typical of the first phase
of evolution , showing an accented minimum of pr~ c~Jre on the
wall; velocity vectors drawn for that step indicate the beginning
of recirculatiun in ~ne boundary layer around the reg ion of
minimum pressure (Fig. 9). tt step 1200, the minimum pressure
has moved to the centerline , and a steepening up of the pressure,

all across the duct , is evident. At step 11400, an imbedded shock
is fitted (marked in the figure by +). The initial fitting of
the shock is rather a rb i t ra ry ,  but suc h arbi t rar iness  is not res-
trictive. In general , an imbedded shock is fitted on any
0:constant line , in the middle of an interval where the d i f f e r-
ence in P exceeds 0.6 , as it is suppressed if its normal Mach
number becomes less than 1 or if locally the shock stretches over
more than two X— interval s  over a single V—interval .

Note that the computational technique allows the shock to
end inside the flow field , and that isobars between the end—p o int
of the shock and the wall shape up in a way which is , at least
qual i ta t ively,  typical of shock—boundary—laye r interactions.
Velocity vectors at this step (Fig. 10) show a pronounced recir—
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culation bubble.

At step 21400 , the flow field is mostly subsonic; the
supersonic flow is confined to a jet—like region (see Fig. 11 ,
where lines of constant Mach number are shown , an d the veoc ity
vectors in Fig. 12).

At step 31400 the loss of accuracy consequent to loss of
resolution is evident ; the jet region , where the imbedded shock
is still present , is covered by three mesh intervals only. The
Mach number distribution (Fig. 13) has the correct trend , but the
transversal gradient is spread out too widely. Nevertheless,
note the format ion of a transversal pressure gradient , very simi-
lar to the pattern found in the isobars computed for a steady
plume originated by the same duct , with separation taking place
exactly where the pressure at the wall equals the ambient pres-
sure (Fig. 114).

To conclude , we show an impressive picture of streamlines
at this step in Fig. 15.
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Fig . 2
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Fig. 3
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Fig. 4
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Fig. 5
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RUN 33. K? .  3488 71577. LINE. I DREF LRST REF. 3.283 1.630
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Fig. 11
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